互金公司言必稱(chēng)大數(shù)據(jù)風(fēng)控,到底有幾分成色?
【數(shù)據(jù)猿導(dǎo)讀】 大數(shù)據(jù)風(fēng)控是目前Fintech領(lǐng)域的主要應(yīng)用,也是資本關(guān)注的焦點(diǎn)。很多互金公司都開(kāi)發(fā)了大數(shù)據(jù)風(fēng)控模型,業(yè)界也涌現(xiàn)了很多專(zhuān)門(mén)做大數(shù)據(jù)風(fēng)控技術(shù)然后向業(yè)界輸出技術(shù)能力的技術(shù)型公司。但是對(duì)于不懂技術(shù)的普通人而言,大數(shù)據(jù)風(fēng)控的概念也是云里霧里

大數(shù)據(jù)風(fēng)控是目前Fintech領(lǐng)域的主要應(yīng)用,也是資本關(guān)注的焦點(diǎn)。很多互金公司都開(kāi)發(fā)了大數(shù)據(jù)風(fēng)控模型,業(yè)界也涌現(xiàn)了很多專(zhuān)門(mén)做大數(shù)據(jù)風(fēng)控技術(shù)然后向業(yè)界輸出技術(shù)能力的技術(shù)型公司。然而,大數(shù)據(jù)風(fēng)控有很強(qiáng)的技術(shù)壁壘,并非每家公司都能做好,不排除一些企業(yè)利用大數(shù)據(jù)風(fēng)控的概念進(jìn)行炒作。對(duì)于不懂技術(shù)的普通人而言,大數(shù)據(jù)風(fēng)控的概念也是云里霧里。
那么,到底大數(shù)據(jù)風(fēng)控是怎樣的,價(jià)值在哪里,又面臨哪些發(fā)展中的問(wèn)題?
大數(shù)據(jù)風(fēng)控已是互金公司的核心競(jìng)爭(zhēng)力
大數(shù)據(jù)風(fēng)控的價(jià)值已經(jīng)不用再多介紹了。這已經(jīng)成為互金公司的核心競(jìng)爭(zhēng)力,也是互金區(qū)別于傳統(tǒng)金融的重要特征?;ソ鸸灸軌?yàn)閭鹘y(tǒng)金融機(jī)構(gòu)所不能服務(wù)的人群提供普惠金融服務(wù),基于大數(shù)據(jù)的風(fēng)控手段功不可沒(méi)。通過(guò)全方位收集用戶(hù)的各項(xiàng)數(shù)據(jù)信息,并進(jìn)行有效的建模、迭代,對(duì)用戶(hù)信用狀況進(jìn)行評(píng)價(jià),可以決定是否放貸以及放貸額度、貸款利率 。
相比于傳統(tǒng)金融的風(fēng)控模式,大數(shù)據(jù)風(fēng)控可以通過(guò)機(jī)器的大規(guī)模數(shù)據(jù)運(yùn)算,完成大量用戶(hù)的貸款申請(qǐng)審核工作,提升工作效率。傳統(tǒng)金融的審核由人工完成,效率會(huì)相對(duì)有限;大數(shù)據(jù)風(fēng)控可以針對(duì)業(yè)務(wù)運(yùn)行中出現(xiàn)的新情況、新數(shù)據(jù)進(jìn)行快速迭代,增強(qiáng)模型的有效性;機(jī)器和軟件可以“24*365”模式工作,擺脫工作時(shí)間的限制。
互金公司發(fā)力大數(shù)據(jù)風(fēng)控
目前很多互金公司都在做大數(shù)據(jù)風(fēng)控,虎嗅之前的文章對(duì)BAT在消費(fèi)金融業(yè)務(wù)進(jìn)行盤(pán)點(diǎn)時(shí)總結(jié)了BAT在大數(shù)據(jù)風(fēng)控方面的技術(shù)。京東也有相關(guān)的布局。
BATJ的大數(shù)據(jù)風(fēng)控技術(shù)
除了BATJ這樣的大公司,近年來(lái)新興起的已經(jīng)具備一定規(guī)模的互金公司也大力布局大數(shù)據(jù)風(fēng)控,以網(wǎng)貸公司和貸款搜索平臺(tái)為主,大多推出了相關(guān)的大數(shù)據(jù)風(fēng)控技術(shù)體系。
國(guó)內(nèi)部分網(wǎng)貸公司與金融搜索公司的大數(shù)據(jù)風(fēng)控技術(shù)
除此之外,還涌現(xiàn)了不少做大數(shù)據(jù)風(fēng)控技術(shù)的金融科技公司,開(kāi)發(fā)大數(shù)據(jù)反欺詐模型和信用評(píng)估模型,向資金端或資產(chǎn)端有資源的金融企業(yè)輸出技術(shù)。這類(lèi)企業(yè)也不斷獲得資本青睞。統(tǒng)計(jì)顯示,近四個(gè)月內(nèi),至少有8家做大數(shù)據(jù)風(fēng)控技術(shù)輸出的公司獲得融資,其中九次方大數(shù)據(jù)、51信用卡、用錢(qián)寶都已融到B輪以上。
大數(shù)據(jù)風(fēng)控技術(shù)領(lǐng)域投融資情況(按融資時(shí)間排序)
從以上幾個(gè)表格可以看出,從BAT這樣的大公司,到互金領(lǐng)域的創(chuàng)業(yè)公司,都在著力研發(fā)大數(shù)據(jù)風(fēng)控技術(shù)。大數(shù)據(jù)風(fēng)控的價(jià)值可見(jiàn)一斑。
大數(shù)據(jù)風(fēng)控具體是怎樣的?
大數(shù)據(jù)風(fēng)控模型的構(gòu)建,包含了明確模型目標(biāo)、定義目標(biāo)變量、確定樣本、確定分析技術(shù)、構(gòu)建模型、模型初步驗(yàn)證、數(shù)據(jù)處理、模型迭代等環(huán)節(jié)。我們專(zhuān)訪(fǎng)了用錢(qián)寶CEO焦可等業(yè)內(nèi)人士后發(fā)現(xiàn),核心工作包括三方面,即獲取數(shù)據(jù)、建立模型、模型在實(shí)踐中優(yōu)化、迭代。
數(shù)據(jù)的來(lái)源
對(duì)于大數(shù)據(jù)風(fēng)控業(yè)務(wù)而言,數(shù)據(jù)來(lái)源主要包括幾部分:
一是用戶(hù)申請(qǐng)時(shí)提交的數(shù)據(jù)信息,如年齡、性別、籍貫、收入狀況等,這些數(shù)據(jù)可以了解用戶(hù)的基本情況,驗(yàn)證用戶(hù)的身份;
二是用戶(hù)在使用過(guò)程中產(chǎn)生的行為數(shù)據(jù),包括資料的更改、選填資料的順序、申請(qǐng)中使用的設(shè)備等,可以通過(guò)用戶(hù)的行為來(lái)進(jìn)行特征挖掘;
三是用戶(hù)在平臺(tái)上累積的交易數(shù)據(jù),如果公司運(yùn)營(yíng)比較久的話(huà),可以累積比較多的用戶(hù)借款相關(guān)數(shù)據(jù),這類(lèi)數(shù)據(jù)對(duì)于判斷用戶(hù)信用會(huì)有很高的價(jià)值;
四是第三方數(shù)據(jù),包括來(lái)自政府、公用事業(yè)、銀行等機(jī)構(gòu)的數(shù)據(jù),以及用戶(hù)在電商、社交網(wǎng)絡(luò)、網(wǎng)絡(luò)新聞等互聯(lián)網(wǎng)應(yīng)用上留存的數(shù)據(jù)。這類(lèi)數(shù)據(jù)可以從多角度展示用戶(hù)的特征,利用這些數(shù)據(jù)進(jìn)行建模分析,可以找出不同特征與信用水平之間的相關(guān)性。
數(shù)據(jù)的建模
數(shù)據(jù)是基礎(chǔ),下一步要做的是構(gòu)建模型,對(duì)數(shù)據(jù)進(jìn)行分析利用。數(shù)據(jù)本身沒(méi)有價(jià)值,數(shù)據(jù)中蘊(yùn)含的信息有很大價(jià)值,這些信息可以逐步歸納為用戶(hù)的特征向量,這些特征可以分為強(qiáng)特征和弱特征,強(qiáng)特征是大而廣之的特征,如性別、年齡、籍貫、學(xué)歷、收入檔次等,弱特征可以認(rèn)為是比較細(xì)微、小眾的特征,如喜歡晚上喝咖啡、經(jīng)常在早上打電話(huà)、半夜發(fā)朋友圈等,不同的特征與用戶(hù)的違約概率有或強(qiáng)或若的關(guān)系。
風(fēng)控即風(fēng)險(xiǎn)控制,評(píng)估用戶(hù)可能的違約情況,主要包括反欺詐和信用評(píng)價(jià)兩部分。反欺詐是辨別那些一開(kāi)始就想違約,進(jìn)而弄虛作假的用戶(hù),信用評(píng)價(jià)是對(duì)用戶(hù)的資信狀況進(jìn)行評(píng)價(jià),判斷其在借款到期后是否會(huì)因?yàn)闊o(wú)力還款而違約。這兩部分還可以繼續(xù)細(xì)分,如身份驗(yàn)證、預(yù)付能力、還款意愿評(píng)估、還款能力評(píng)估、穩(wěn)定性評(píng)估等。
大數(shù)據(jù)風(fēng)控模型構(gòu)建的兩個(gè)必要步驟,一是發(fā)現(xiàn)不同特征與違約之間是否有相關(guān)性,二是為不同的特征賦予權(quán)重或違約概率,以確定擁有多項(xiàng)特征的用戶(hù)的信用狀況,決定是否提供金融服務(wù)、具體的額度以及利率水平。
建模的技術(shù)主要包括logistic回歸、決策樹(shù)、普通線(xiàn)性回歸、分層分析、聚類(lèi)分析、時(shí)間序列等,隨著人工智能技術(shù)的進(jìn)步,機(jī)器學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)等算法也已經(jīng)運(yùn)用到大數(shù)據(jù)建模過(guò)程中。
模型的應(yīng)用與迭代
模型開(kāi)發(fā)出來(lái)后,應(yīng)用到具體的信貸等金融活動(dòng)中,等若干個(gè)放款周期結(jié)束后,會(huì)有結(jié)果數(shù)據(jù)出來(lái),這時(shí)候需要依據(jù)這些運(yùn)營(yíng)數(shù)據(jù)對(duì)模型進(jìn)行修正,經(jīng)過(guò)一次次的迭代,模型的有效性、實(shí)用性會(huì)逐步提升。
例如,一家企業(yè)完成了100萬(wàn)單的信貸記錄,這就意味著在貸款陸續(xù)到期后,其大數(shù)據(jù)風(fēng)控體系將收獲100萬(wàn)的數(shù)據(jù)樣本,這些數(shù)據(jù)樣本與用戶(hù)信用高度相關(guān),具有很高的價(jià)值,使用這些數(shù)據(jù)對(duì)風(fēng)控模型進(jìn)行進(jìn)一步的優(yōu)化,可以提升風(fēng)控的有效性。由此可見(jiàn),大數(shù)據(jù)風(fēng)控需要與具體業(yè)務(wù)緊密結(jié)合,不斷“學(xué)習(xí)”,才能夠穩(wěn)定、可持續(xù)的升級(jí),對(duì)業(yè)務(wù)有進(jìn)一步的指導(dǎo)意義。
總體來(lái)說(shuō),目前大數(shù)據(jù)風(fēng)控還在發(fā)展初期,未來(lái)行業(yè)一個(gè)可能的演化路徑是:一些擁有數(shù)據(jù)資源和技術(shù)算法優(yōu)勢(shì)的企業(yè)在市場(chǎng)規(guī)模上具備了一定優(yōu)勢(shì)后,擁有更多的數(shù)據(jù)資源來(lái)支持模型的優(yōu)化迭代,強(qiáng)化其技術(shù)優(yōu)勢(shì),從而可以在控制風(fēng)險(xiǎn)的基礎(chǔ)上提高貸款申請(qǐng)的通過(guò)率,使自己技術(shù)支持下的交易規(guī)模越做越大。在不考慮黑天鵝事件的前提下,行業(yè)可能出現(xiàn)強(qiáng)者恒強(qiáng)的馬太效應(yīng)。
如何判斷大數(shù)據(jù)風(fēng)控的成色
幾乎所有的互金公司都在宣傳自己的大數(shù)據(jù)風(fēng)控,這樣可以讓用戶(hù)更加放心,也給投資機(jī)構(gòu)講一個(gè)技術(shù)含量高的故事,但并非每個(gè)公司都有相應(yīng)的能力。就算確實(shí)在開(kāi)發(fā)大數(shù)據(jù)技術(shù),能力也有高下之分。如何判斷一家互金公司的大數(shù)據(jù)風(fēng)控技術(shù)的成色?
首先看團(tuán)隊(duì)實(shí)力,團(tuán)隊(duì)是否有足夠的技術(shù)人員,是否有相應(yīng)的開(kāi)發(fā)經(jīng)驗(yàn)和履歷。技術(shù)團(tuán)隊(duì)的規(guī)模與構(gòu)成是衡量其大數(shù)據(jù)能力的重要指標(biāo),這一點(diǎn)比較直觀。
其次,看公司的業(yè)務(wù)特征是否有使用的數(shù)據(jù)技術(shù)的必要。用錢(qián)寶CEO焦可認(rèn)為,企業(yè)如果服務(wù)于足夠海量的用戶(hù)群體,交易頻次也足夠高頻,則有通過(guò)大數(shù)據(jù)技術(shù)提升運(yùn)營(yíng)能力的需要,也會(huì)有越來(lái)越大的數(shù)據(jù)支撐模型的迭代。
如果一家企業(yè)只是服務(wù)于有限的客戶(hù),使用傳統(tǒng)的線(xiàn)下風(fēng)控模式就可以,沒(méi)有使用大數(shù)據(jù)技術(shù)的必要,而且過(guò)程中無(wú)法產(chǎn)生大量的數(shù)據(jù),也就無(wú)法為模型提供數(shù)據(jù)支持,所以也就沒(méi)有使用大數(shù)據(jù)風(fēng)控的可能性。例如,在P2P行業(yè),如果借款人都是機(jī)構(gòu),且都是大額融資標(biāo)的,則大數(shù)據(jù)風(fēng)控沒(méi)有用武之地,也沒(méi)有使用的必要。
另外,還要看經(jīng)營(yíng)的時(shí)間長(zhǎng)短。陸金所董事長(zhǎng)計(jì)葵生曾表示,驗(yàn)證一個(gè)大數(shù)據(jù)風(fēng)控模型的有效性,至少需要5萬(wàn)筆貸款進(jìn)行驗(yàn)證。如果業(yè)務(wù)經(jīng)營(yíng)沒(méi)有多長(zhǎng)時(shí)間,不會(huì)累積足夠的歷史數(shù)據(jù),也就無(wú)法對(duì)模型進(jìn)行技術(shù)進(jìn)行及時(shí)的迭代更新,其有效性也就面臨很大考驗(yàn)。
大數(shù)據(jù)風(fēng)控面臨哪些問(wèn)題?
發(fā)展大數(shù)據(jù)風(fēng)控?zé)o疑是行業(yè)必經(jīng)趨勢(shì),但其發(fā)展道路肯定也不是一帆風(fēng)順,還是面臨很多障礙和困境。
首先是數(shù)據(jù)源的問(wèn)題。數(shù)據(jù)量需要進(jìn)一步擴(kuò)大,為模型提供訓(xùn)練數(shù)據(jù)方面的支撐。對(duì)于一些缺乏信用數(shù)據(jù)的群體而言,目前很多線(xiàn)下行為都還沒(méi)有數(shù)據(jù)化,線(xiàn)上數(shù)據(jù)也比較有限,對(duì)于這類(lèi)群體,各種行為線(xiàn)上化、數(shù)據(jù)化進(jìn)而將數(shù)據(jù)結(jié)構(gòu)化,需要有一個(gè)過(guò)程。近些年來(lái)隨著智能手機(jī)與社交網(wǎng)絡(luò)應(yīng)用的普及,很多缺乏信用數(shù)據(jù)的群體在線(xiàn)上有了一些數(shù)據(jù),但數(shù)據(jù)量還需要進(jìn)一步增加。未來(lái)物聯(lián)網(wǎng)的發(fā)展可能帶來(lái)更豐富的數(shù)據(jù)信息,輔助進(jìn)行風(fēng)控決策。
其次是面對(duì)的欺詐行為層出不窮,不斷考驗(yàn)?zāi)P偷挠行浴?倳?huì)有想要騙貸的群體對(duì)反欺詐模型進(jìn)行研究,尋找漏洞以騙取資金,各種偽造技術(shù)也助長(zhǎng)其欺詐行為。一個(gè)模型出來(lái)以后,剛開(kāi)始可能比較有效,但面對(duì)新出現(xiàn)的欺詐行為可能又缺乏辨別能力,導(dǎo)致模型精準(zhǔn)度下降。這就需要大數(shù)據(jù)風(fēng)控模型在試錯(cuò)中不斷迭代,加入更多復(fù)雜特征和更多維度的特征。這對(duì)于大數(shù)據(jù)風(fēng)控公司的技術(shù)能力是持續(xù)的考驗(yàn)。
另外,大數(shù)據(jù)風(fēng)控的發(fā)展要避免場(chǎng)景、行業(yè)、授信人群的集中化。企業(yè)做大數(shù)據(jù)風(fēng)控,往往會(huì)選擇一個(gè)場(chǎng)景、垂直行業(yè)或細(xì)分人群進(jìn)行切入,這樣可以將一個(gè)場(chǎng)景做深做透,深度分析、利用該領(lǐng)域的數(shù)據(jù),但從金融的規(guī)律看,信貸過(guò)于集中于某個(gè)領(lǐng)域可能帶來(lái)風(fēng)險(xiǎn)。讀秒CEO周靜表示,在做資產(chǎn)的時(shí)候,包括人群區(qū)域性、資產(chǎn)類(lèi)別盡可能得做分散。零售信貸行業(yè)很多風(fēng)險(xiǎn)事件是因?yàn)樾袠I(yè)對(duì)某一個(gè)群體人的過(guò)度的授信,導(dǎo)致風(fēng)險(xiǎn)延伸到整個(gè)經(jīng)濟(jì)。如果集中在某個(gè)場(chǎng)景或者某一類(lèi)人群,風(fēng)險(xiǎn)可能越來(lái)越大,最終對(duì)行業(yè)市場(chǎng)有一個(gè)很大的沖擊。
來(lái)源:虎嗅網(wǎng)
刷新相關(guān)文章
我要評(píng)論
人物專(zhuān)訪(fǎng)more >
活動(dòng)推薦more >
- 2018 上海國(guó)際大數(shù)據(jù)產(chǎn)業(yè)高2018-12-03
- 2018上海國(guó)際計(jì)算機(jī)網(wǎng)絡(luò)及信2018-12-03
- 中國(guó)國(guó)際信息通信展覽會(huì)將于2018-09-26
- 第五屆FEA消費(fèi)金融國(guó)際峰會(huì)62018-06-21
- 第五屆FEA消費(fèi)金融國(guó)際峰會(huì)2018-06-21
- “無(wú)界區(qū)塊鏈技術(shù)峰會(huì)2018”2018-06-14
不容錯(cuò)過(guò)的資訊
-
1#后疫情時(shí)代的新思考#疫情之下,關(guān)于醫(yī)
-
2數(shù)據(jù)軟件產(chǎn)品和服務(wù)商DataHunter完成B輪
-
3眾盟科技獲ADMIC 2020金粲獎(jiǎng)“年度汽車(chē)
-
4數(shù)據(jù)智能 無(wú)限未來(lái)—2020世界人工智能大
-
5#2020非凡大賞:數(shù)字化風(fēng)起云涌時(shí),共尋
-
6#榜樣的力量#天璣數(shù)據(jù)大腦疫情風(fēng)險(xiǎn)感知
-
7#榜樣的力量#內(nèi)蒙古自治區(qū)互聯(lián)網(wǎng)醫(yī)療服
-
8#榜樣的力量#實(shí)時(shí)新型肺炎疫情數(shù)據(jù)小程
-
9#榜樣的力量#華佗疫情防控平臺(tái)丨數(shù)據(jù)猿
-
10#后疫情時(shí)代的新思考#構(gòu)建工業(yè)互聯(lián)網(wǎng)新